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Abstract—High-speed IP address lookup is essential to achieve wire speed packet forwarding in Internet routers. The longest prefix

matching for IP address lookup is more complex than exact matching because it involves dual dimensions: length and value. This

paper presents a new formulation for IP address lookup problem using range representation of prefixes and proposes an efficient

binary trie structure named a priority trie. In this range representation, prefixes are represented as ranges on a number line between 0

and 1 without expanding to the maximum length. The best match to a given input address is the smallest range that includes the input.

The priority trie is based on the trie structure, with empty internal nodes in the trie replaced by the priority prefix which is the longest

among those in the subtrie rooted by the empty nodes. The search ends when an input matches a priority prefix, which significantly

improves the search performance. Performance evaluation using real routing data shows that the proposed priority trie is very good in

performance metrics such as lookup speed, memory size, update performance, and scalability.

Index Terms—Internet, router, IP address lookup, binary trie, priority trie, range representation.
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1 INTRODUCTION

THE rapid growth of Internet traffic requires routers to
perform high-speed packet forwarding. Address look-

up is one of the most challenging tasks since it should be
performed at wire speed for the incoming packets, even as
packet arrival rates and routing table sizes are dramatically
increasing [1]. Address lookup determines the output port
using the destination Internet protocol (IP) address of an
incoming packet in order to forward the packet toward its
final destination.

IP addresses have two levels of hierarchy: a network part
and a host part. The network part is called the prefix.
Classless interdomain routing (CIDR) structure allows
prefixes of arbitrary length and address aggregation at
arbitrary levels. As a result, the address lookup in routers
requires searching the forwarding table for the longest prefix
that matches the destination address of the input packet to
find the most specific route. Determining the longest
matching prefix (LMP) or the best matching prefix (BMP)
involves two dimensions: length and value [2].

Several metrics are useful to evaluate the performance of
IP address lookup algorithms. Search speed is the primary
metric and is highly dependent on the number of memory
accesses for table lookup, since memory access is the most
time-consuming operation in the search process [3]. The
size of required memory is also an important metric as the

routing tables have grown to hundreds of thousands of
entries. For routing tables that support dynamic routing, the
ability to provide incremental updates is also important.
Scalability is another important metric to accommodate
growing numbers of routing entries.

High-performance routers based on ternary content
addressable memory (TCAM) have been implemented.
With TCAM, an address lookup is performed with a single
memory access [4], [5]. TCAM is much more expensive than
ordinary memory in circuit complexity as well as power
consumption. Many algorithms and architectures perform-
ing the longest prefix match using ordinary memories have
been proposed.

As a basic address lookup structure, binary tries are
simple and easy to implement [6]. The binary trie structure
facilitates incremental update and provides good scalability.
However, the speed of binary tries is limited and requires
large memory because of empty internal nodes. Most of the
successful methods for IP address lookup practically used
are essentially high-performance variants of the basic binary
trie [7] such as a multibit trie [2] and the tree bitmap [8].

Range matching algorithms for the IP address lookup
problem represent prefixes as ranges in a number line
between 0 and 232 � 1 [9], [10], [11]. In order to remove the
length dimension in the IP address lookup problem and
present prefixes as ranges, the start points and the end points
of the ranges are padded with zeros and ones to span the
maximum length. Ranges are divided by disjoint intervals,
and the BMP for each disjoint interval is precomputed and
stored. Binary search based on entry values is applied in the
range matching algorithm.

This paper presents a new mathematical formulation
using the range representation of prefixes and proposes a
new IP address lookup structure named a priority trie. Here,
the prefixes are represented as a range between 0 and 1. The
IP address lookup problem is formulated as the range
inclusion problem finding the smallest range that includes
the given input address. In the proposed range representa-
tion, the start and the end points are not necessarily padded to
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the maximum length. Many interesting characteristics of
prefixes are exploited using the proposed range representa-
tion. An earlier version of the priority trie was presented in
[12] by one of the authors. In the proposed priority trie, empty
internal nodes in the binary trie are removed by relocating the
longest prefixes included in the subtrie rooted by empty
nodes. The relocated prefixes are denoted as priority prefixes.
Since each empty internal node is replaced by the longest
prefix belonged to its subtrie, longer prefixes are compared
earlier than shorter prefixes, and hence, the search perfor-
mance and the memory requirement in the priority trie are
significantly improved compared to the binary trie.

This paper is organized as follows: Section 2 briefly
summarizes related work. Section 3 presents the IP address
lookup problem as a range inclusion problem. The binary
trie is characterized using the proposed range representa-
tion in Section 4. Section 5 presents the proposed algorithm
and some characteristics of the proposed priority trie in
the range representation. In Section 6, an implementation
example of the proposed algorithm is illustrated. Section 7
shows the performance evaluation results, and Section 8
concludes the paper.

2 RELATED WORK

2.1 Algorithms Based on Hashing

Hashing has been popularly used for layer 2 address
lookup which requires exact matching [13]. Hashing
converts a long string into a smaller memory address.
Collisions are an intrinsic problem of hashing. Broder and
Mitzenmacher proposed to use multiple hash functions to
reduce collisions [14]. For IP address lookup, hashing is
applied to each length of prefixes, and the longest prefix
among matched prefixes is selected as the best match [15],
[16]. Waldvogel et al. proposed binary searching on hash
tables organized by prefix lengths [15]. Lim et al. proposed
to use multiple hash functions in reducing collisions in
hashing and perform parallel search for every hash table
in each length [16]. Another interesting approach is to
combine hashing and binary search [17], where hashing is
first applied to prefixes of the same length, and for prefixes
that collide into the same entry, binary search is applied.
Recently, it is proposed to use Bloom filters in reducing the
number of hash table accesses [18], [19].

2.2 Algorithms Based on Binary Tries

The binary trie is an attractive data structure for IP address
lookup [2], [6], [7], [8], [20], [21], [22]. It is a tree-based data
structure which applies linear search on length. Each prefix
resides in a node of the trie in which the node level
corresponds to the prefix length. At each node, the search
proceeds to the left or right according to sequential
inspection of address bits starting from the most significant
bit. Fig. 1 shows the binary trie for an example set of
prefixes. In Fig. 1, black nodes represent prefixes and white
nodes represent empty internal nodes. The binary trie
structure is simple and easy to implement. It provides good
scalability as the number of routing table entries becomes
large. However, since the binary trie has many empty
nodes which are not involved with routing prefixes, it is
inefficient in memory usage and search speed. Moreover, in

the binary trie, shorter prefixes are located at higher levels
than longer prefixes, and hence, shorter prefixes are
compared earlier than longer prefixes in the search process.
In this paper, a higher level is assumed to be a smaller level.
For example, the root node is at level 0 which is the highest
level, and a leaf node P1 is at level 6 which is the lowest
level in Fig. 1. Therefore, even though a match to an input
address is found, the search must continue until a leaf is
visited since there could exist a longer prefix that matches
the input address. This reduces the search efficiency. The
multibit trie inspects more than 1 bit at a time [20], and the
path-compressed trie collapses one-way branch nodes [2].
The level-compressed trie applies the multibit trie with
path compression [21]. The bitmap algorithm [8] employs
an encoding scheme to a multibit trie to reduce the memory
penalty associated with a naive implementation. In order to
save memory by compression, the Lulea algorithm pro-
posed a compact trie structure for fast lookup [22], but it
requires a lot of preprocessing and does not allow
incremental updates.

2.3 Algorithms Based on Binary Search for Prefix
Values

The binary search tree (BST) [23] algorithm performs binary
search on prefix values. To do this, prefixes are sorted
according to their values. The BST scheme provides a set of
new definitions for comparison of prefixes of different
lengths. The BST does not have empty internal nodes, and
hence, it minimizes the required memory size. However,
binary search on the sorted list of prefix values has a
limitation that an ancestor prefix should be compared earlier
than its descendent. Depending on the depth of prefix
hierarchy, trees can be highly unbalanced and the depth can
become very large, as will be shown in Section 7.

As an attempt to reduce the depth of tree, the weighted
binary search tree (WBST) [24] considers the number of
descendents in selecting the root of each level. The
constructed WBST has a shorter depth and is more balanced
than the BST. Since disjoint prefixes construct a perfectly
balanced tree, the multiple balanced prefix tree (MBPT) [25]
constructs multiple balanced trees only with disjoint
prefixes. The disjoint prefix tree (DPT) [26] constructs the
BST for leaf-pushed prefixes, and hence, it is a perfectly
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balanced tree for the extended set of prefixes generated by
the leaf-pushing. Recently, it is proposed to build a
perfectly balanced binary tree only with the set of disjoint
prefixes and to store a prefix vector in each node
representing the prefix hierarchy [27].

Binary search on range (BSR) [9], [10], [11] treats each
prefix as a range which has a start point and an end point.
The start and end points are defined by padding with zeros
and ones to the maximum length, respectively. Hence, the
length dimension is removed, and a prefix is mapped into a
range on the address space between 0 and 232 � 1. By
sorting the start points and the end points of ranges based
on their values, the address space is divided by disjoint
intervals. For each disjoint interval, the BSR scheme
precomputes and stores the BMP and the binary search is
performed on the sorted list of start and end points. The
worst-case number of routing table entries could be two
times of the actual number of prefixes. Because of the
precomputation of BMPs for each interval, complicated
extra data structure is required for the incremental update
as in [11] and [28].

3 IP ADDRESS LOOKUP PROBLEM

This section formulates the IP address lookup problem as a
range inclusion problem. Let P ¼ fP1; P2; . . . ; PNg be the set
of routing prefixes, where N is the number of prefixes, bi;k is
the kth bit of prefix Pi (bi;k is either 0 or 1), and ni is the
prefix length of Pi.

The prefix can be represented as a half-open range
rðPiÞ ¼ ½li; uiÞ 2 ½0; 1Þ:

li ¼
Xni

k¼1

bi;k2
�k;

ui ¼
Xni

k¼1

bi;k2
�k þ 2�ni ;

where li and ui are the lower and upper bounds of the
prefix range, respectively. In other words, the length of each
prefix determines the width of the prefix range, and each
prefix corresponds to the range of 2�ni starting from the
lower bound in the number line between 0 and 1. An IP
address A can be represented as a value:

vðAÞ ¼
XW

k¼1

ak2
�k; ð1Þ

where ak is the kth bit of the IP address A and ak is either 0
or 1. In (1), W is the number of bits in an IP address (W is 32
in IPv4).

Let Pi and Pj be two distinct prefixes in the prefix set P.

Definition 1. PrefixesPi andPj are disjoint if rðPiÞ \ rðPjÞ ¼ ;.
For example, prefixes 0� and 1� are disjoint, because
rð0�Þ ¼ ½0; 0:5Þ, rð1�Þ ¼ ½0:5; 1Þ, and rð0�Þ \ rð1�Þ ¼ ;.

Definition 2. Prefix Pi is enclosed in prefix Pj if rðPiÞ 2 rðPjÞ.
For example, prefix 11� is enclosed in prefix 1�, because
rð11�Þ ¼ ½0:75; 1Þ 2 ½0:5; 1Þ ¼ rð1�Þ.

Lemma 1. If prefix Pj is a substring of prefix Pi, then prefix Pi is
enclosed in prefix Pj.

Proof. See the Appendix. tu
Lemma 2. If the first ni bits starting from the most significant

bits of IP address A are the same as prefix Pi of length ni, then
vðAÞ 2 rðPiÞ, i.e., the value of A is enclosed in the range of
prefix Pi.

Proof. See the Appendix. tu
Corollary 3. If an IP address vðAÞ 2 rðPiÞ, then the IP address A

matches the prefix Pi.

An IP address could match multiple prefixes. The IP
address lookup problem is to find the longest prefix
among the matched prefixes, namely, the longest prefix
matching (LPM).

LetMðAÞ represent the set of prefixes that an IP address
A matches:

MðAÞ ¼ fPi 2 P : vðAÞ 2 rðPiÞg: ð2Þ

Let Pi1 ; Pi2 ; . . . ; Pin be the elements in MðAÞ such that
vðAÞ 2 rðPi1Þ 2 rðPi2Þ 2 � � � rðPinÞ. If the elements are sorted
in this way, then Pi1 corresponds to the smallest range in
MðAÞ, and hence, the Pi1 is the longest prefix that includes
the address A by Lemmas 1 and 2.

In this range representation for the IP address lookup
problem, the IP lookup problem is to find the prefix
corresponding to the smallest range in MðAÞ 2 P for a
given IP address A.

4 BINARY TRIE

This section presents the conventional binary trie in the
context of the IP lookup problem in Section 3. In the binary
trie, a node has a fixed location which can be defined by a
bit string. For example, the left child node of the root node
has the bit string of 0, and the right child node has the bit
string of 1. If a prefix corresponding to the bit string of a
node exists in an IP routing table, the routing information of
the prefix is stored in the node and the node is nonempty. If
there is no prefix corresponding to the bit string of a node,
the node is empty. If the longest number of prefix bits W is
32 (as in IPv4), there are 20 þ 21 þ � � � þ 232 ¼ 233 � 1
possible nodes for a binary trie in IPv4.

LetBðxÞ represent the bit string of a node x. In a nonempty
node x in the binary trie, the prefix corresponding to the node
x is the bit string BðxÞ. In the binary trie, an empty node x is
generated if there is no prefix corresponding to the bit string
BðxÞ and there exists at least one descendant node corre-
sponding to a prefix which has the bit string BðxÞ as its
substring. The number of empty nodes in the binary trie is
dependent on the prefix set of the IP routing table.

Ranges can be defined for the bit strings in the binary trie
in a similar way to that used for prefixes in Section 3. Let
bx;k be the kth bit in bit string BðxÞ of node x and let nx be
the length of bit string BðxÞ. A bit string can also be
represented as a half-open range rðBðxÞÞ ¼ ½lx; uxÞ 2 ½0; 1Þ:

lx ¼
Xnx

k¼1

bx;k2
�k;

ux ¼
Xnx

k¼1

bx;k2
�k þ 2�nx ;
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where lx and ux are the lower and upper bounds of bit
string BðxÞ, respectively.

Let x and y be two distinct nodes in the binary trie.

Definition 3. Nodes x and y are disjoint if rðBðxÞÞ \
rðBðyÞÞ ¼ ;.

Definition 4. Node x and prefix Pi are disjoint if rðBðxÞÞ \
rðPiÞ ¼ ;.

Definition 5. Prefix Pi is enclosed in node x if rðPiÞ 2 rðBðxÞÞ.
Lemma 4. If BðxÞ is a substring of a prefix Pi, then prefix Pi is

enclosed in node x.

Lemma 4 can be proved in a similar way as the proof for
Lemma 1.

Lemma 5. If nodes x and y are distinct nodes at the same level in
the binary trie, then rðBðxÞÞ \ rðBðyÞÞ ¼ ;, and the nodes x
and y are disjoint.

Proof. See the Appendix. tu
Corollary 6. If BðxÞ is a substring of prefix Pi and BðyÞ is a

substring of prefix Pj, and the nodes x and y are distinct nodes
at the same level in the binary trie, then the prefixes Pi and Pj
are disjoint.

5 THE PROPOSED ALGORITHM

5.1 Priority Trie

Let jrðPiÞj represent the width of range rðPiÞ ¼ ½li; uiÞ. Then,
jrðPiÞj ¼ ui � li ¼ 2�ni , where ni is the length of prefix Pi.
Prefix Pi has a higher priority than prefix Pj if the prefix
length of Pi is longer than that of prefix Pj (ni > nj), i.e.,
jrðPiÞj < jrðPjÞj. Hence, a longer prefix has a higher priority.
If ni ¼ nj, the priority can be arbitrary. Using this priority,
the elements of prefix set P ¼ fP1; P2; . . . ; PNg can be sorted
such that Pi has higher priority than Pj for i < j.

Besides the fact that the binary trie has many empty
internal nodes, another intrinsic problem is that longer
prefixes are stored at lower levels, and hence, they are
compared later than shorter prefixes. Therefore, even if a
match is found, search has to be continued until a leaf is
visited. If prefixes are reversely assigned, in other words, if
longer prefixes are associated with higher level nodes and
shorter prefixes are associated with lower level nodes,
searching finishes immediately when there is a match.
However, in order for a shorter prefix to be associated with
a node in the lower level than its length, the prefix has to be
duplicated by 2L�ni times, where ni is the prefix length andL
is the level. To avoid the duplication of prefixes, the proposed
priority trie associates higher priority prefixes with the empty
nodes of a binary trie.

Let EðxÞ represent the set of prefixes that are enclosed in
node x. Let P ðxÞ represent the prefix with the highest
priority in EðxÞ. If a node x is empty in the binary trie,
prefix P ðxÞ is stored in empty node x in the proposed
priority trie. Once prefix P ðxÞ is stored in node x, the node
is marked as a priority node. If node y is nonempty in the
binary trie, the prefix at node y is bit string BðyÞ (the prefix
is not changed), and node y is marked as an ordinary node.
Let SðxÞ represent the stored prefix in node x. If the node x
is a priority node, SðxÞ ¼ P ðxÞ, and otherwise, SðxÞ ¼ BðxÞ.

Lemma 7. If nodes x and y are two distinct ordinary nodes at the
same level in the priority trie, the prefixes at nodes x and y are
disjoint.

Proof. See the Appendix. tu
Lemma 8. If nodes x and y are two distinct priority nodes at the

same level in the priority trie, the prefixes at nodes x and y are
disjoint.

Proof. See the Appendix. tu
Lemma 9. If node x is an ordinary node and node y is a priority

node at the same level in the priority trie, the prefixes at nodes
x and y are disjoint.

Proof. See the Appendix. tu
Lemma 10. Let Pi and Pj be the prefixes at nodes x and y,

respectively. If nodes x and y are distinct nodes at the same
level in the priority trie, then prefixes Pi at node x and Pj at
node y are disjoint.

Proof. See the Appendix. tu

Since higher priority prefixes are only associated with
empty nodes and each prefix is located in the same level or
in a higher level than its prefix length, there is no need for
prefix duplication in the proposed algorithm.

5.2 Build Process

There are two possible ways of building the priority trie.
First, a conventional binary trie is built in which a prefix with
length ni is stored at a node in level ni, and then, the binary
trie is traversed. If a nonempty node is found, the node is
marked as an ordinary prefix. If an empty node x is found,
the prefixes enclosed in x, i.e., EðxÞ, are sorted, the node
storing the highest priority prefix P ðxÞ is removed, and the
prefix P ðxÞ is stored into node x. The node x is now marked
as a priority node. Since the highest priority prefix which was a
leaf node is relocated to a higher level node, there can be
empty nodes which do not have a prefix in lower levels. They
also have to be deleted. Note that the prefix can be moved
only to a higher level in this step. If prefix Pi at level ni in the
binary trie is moved to level LðL < niÞ in the priority trie, the
level is reduced by ni � L for this prefix. This step is
continued until the binary trie is completely traversed or
there are no empty nodes. This method of building the
priority trie causes high computational complexity.

The second way of building the priority trie is by
incremental updates. Prefixes are primarily sorted in the
decreasing order of their lengths. Prefixes with the same
length are not necessarily sorted. Starting from a prefix with
the longest length, the prefix is stored into the root node and
the node is marked as a priority node. A next prefix is stored
in the left or right child of the root node depending on the
first bit of the prefix and marked as a priority node. This
processing is repeated for every prefix. However, a prefix
with length ni should be stored at a node in level L, which is
less than or equal to ni. If L ¼ ni, the node is marked as an
ordinary node. In other words, in storing a prefix, if the node
of the level which is the same as the length of the prefix was
already a priority node, that is, if the node was already
occupied by another priority prefix, the node should be
converted to an ordinary node and the priority prefix
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should be relocated into a lower level node. In relocating the
priority prefix, if a priority node is encountered and the
node has a shorter length prefix matching to the priority
prefix, the priority prefix needs to be stored in the node. The
same processing is repeated for the prefix which lost its
place. The pseudocode for the incremental build process can
be represented as follows:

BuildPriorityTrie ( ) {

Sort Prefixes as P1; P2; . . . ; PN ;

for (i ¼ 1; i � N ; i++) {

x ¼ root; p ¼ Pi; L ¼ 0;

BuildNode (x, p, L);
}

}

BuildNode (node x, prefix p, level L) {

if (x is empty) {

SðxÞ ¼ p; // Store p at x

if (nðpÞ > L) Mark x as a priority node;

else Mark x as an ordinary node;

return;
}

else { // x is nonempty

if (nðpÞ ¼¼ L and x is a priority node) {

tmp ¼ SðxÞ; SðxÞ ¼ p; p ¼ tmp;

Mark x as an ordinary node;

}

else if ð ðnðpÞ > nðSðxÞÞÞ and ðrðpÞ 2 rðSðxÞÞÞ and

(x is a priority node) ) {
tmp = SðxÞ; SðxÞ = p; p = tmp;

}

Lþþ;

y is the child node of x identified by the Lth bit of p;

// 0: left child, 1: right child

BuildNode(y, p, L);

}

}

As shown in the pseudocode, once the BuildNode
function is called, it is recursively called if the node x is
nonempty. The function is completed when node x is
empty and the prefix is stored into x. Hence, in the build
process, a single node is created for each Pi, and this
process is repeated N times for i ¼ 1; . . . ; N . Therefore, the
number of nodes in the final priority trie becomes N , the
number of prefixes.

The complexity in inserting a prefix is proportional to the
current depth of the trie. Hence, the complexity in building
the priority trie incrementally is less than O(NDp), where
Dp is the depth of the priority trie with N prefixes.

5.3 Search Process

Lemma 11. Let x be a node at level L. If an input IP address A

matches Pm at a priority node x, then Pm has the smallest

prefix range inMðAÞ, i.e., Pm is the BMP in the given prefix

set P ¼ fP1; P2; . . . ; PNg.
Proof. See the Appendix. tu

The search process starts from the root node. At each
node, an input address is compared with the stored prefix

to find out whether the input matches the prefix at the node.
By Lemma 2, if the first ni bits of the input address are the
same as those of the stored prefix with length ni, they are
determined as matched. Lemma 11 states that the search
process can be finished at a priority node in any level
without searching lower levels if the input matches the
prefix at a priority node. This means that the BMP for IP
address A can be found without searching all the prefixes in
MðAÞ, which is a very important characteristic of the
proposed algorithm for reducing the number of memory
accesses. If the input matches the prefix at an ordinary
node, the stored prefix is remembered as the current best
match. If the input matches the prefix at an ordinary node
or the input does not match in the current level L, the
(Lþ 1)th bit of the input address is examined. If the bit is 0,
the search continues on the left child, and otherwise, the
search continues on the right child. The pseudocode for the
search process can be represented as follows and the search
complexity is O(Dp):

Search (IP address A, node x)

{

BMP ¼ �; // default prefix

x ¼ root; L ¼ 0;
do {

if (vðAÞ 2 rðSðxÞÞ) {

// Input IP address matches a stored prefix SðxÞ
BMP ¼ SðxÞ;
if (x is a priority node)

// Matched prefix is a priority prefix

break;

}
Lþþ;

y is the child node of x identified by the Lth bit of A;

// 0: left child, 1: right child

x y;

} while (x is a valid node);

return BMP;

}

As shown in the pseudocode of search procedure, the
input address is compared with the stored prefix at each node
in the proposed priority trie, while the comparison is not
required in the regular binary trie. However, search speed
is evaluated by the number of memory accesses required to
perform the search procedure since the memory lookup is the
slowest operation. Both tries require a memory lookup in
accessing each node. The time to perform the comparison is
negligible compared with the time to access the memory.

5.4 Update

The proposed priority trie provides incremental update for
a prefix deletion or insertion. For the insertion of a prefix in
the proposed algorithm, there are two cases that multiple
nodes are affected by a prefix insertion. The first case is
when the inserted prefix matches a priority prefix and is
longer than the priority prefix. The second case is that the
node of the inserted prefix to be stored as an ordinary prefix
was preoccupied by another priority prefix. In these cases,
the inserted prefix takes the place, and for the prefix, for
which its place was taken away, the same procedure is
repeated. If the number of nested networks is small as
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expected from the known statistics [28], the number of
nodes affected by a prefix insertion is statistically limited to
small numbers. In other cases, the inserted prefix is stored
at a leaf node by creating a new leaf. The pseudocode for
the insertion process can be represented as follows and the
insertion complexity is O(Dp):

Insertion (prefix p) {
x ¼ root; L ¼ 0;

BuildNode (x, p, L);

}

For the deletion of a prefix in the proposed priority trie,
the prefix is searched and deleted. Now, the node becomes
empty. If the empty node has any child nodes, the prefix
stored in one of its child nodes is relocated to the node. If the
relocated prefix was a priority prefix, the node is marked as
a priority node, and otherwise, the node is marked as an
ordinary node. In case an ordinary node is relocated into a
higher level node, even though the prefix is stored in a level
shorter than its length, the node type should not be changed
since it is possible that longer prefixes exist in lower levels.
The deletion is simple in this way. This process is repeated
until a leaf node is deleted. The deletion complexity is O(2Dp)
since each node from the deleted node down to a leaf node is
read once and written once. The pseudocode for the deletion
process can be represented as follows:

Deletion (prefix p) {

q ¼ Search(p, x);

if (p ¼¼ q) // Prefix p exists in priority trie

DeleteNode (x, p);

}

DeleteNode (node x, prefix p) {
z and w are the left and right child node of

x, respectively;

if (z and w are null) // no child (leaf node)

Delete x; return;

else {

if (z is nonnull) y z;

else y w;

SðxÞ ¼ SðyÞ;
if (y is a priority node) Mark x as a priority node;

else Mark x as an ordinary node;

DeleteNode (y, SðyÞ);
}

}

6 AN IMPLEMENTATION EXAMPLE

Table 1 shows the characteristics of each prefix for the
example prefix set in Fig. 1. The prefixes in Table 1 are sorted
in the order of decreasing priority. The range that each prefix
covers is shown. The enclosed prefixes of each prefix are also
shown. Longer prefixes have higher priorities, and if the
lengths are the same, the priority order is arbitrary.

Fig. 2 shows the proposed priority binary trie built using
the proposed build algorithm for the example prefix set in
Fig. 1. Priority nodes are represented by white nodes and
ordinary prefixes are represented by black nodes. As
shown, the depth of the trie is reduced to 3 in the proposed
priority trie from 6 in the binary trie in Fig. 1.

Table 2 shows the routing table implementing the
proposed priority trie. The first field of the routing table is
the priority field. If the stored prefix in this entry is the
priority prefix, the field is set, and otherwise, it is reset. The
next two fields are the stored prefix and the length of the
prefix. By Lemma 2, if the first ni bits of a given input address
are the same as the stored prefix where ni is the length of the
stored prefix, then the input is included in the range covered
by the stored prefix and determined as a match. The next two
fields are two pointers for the children of the current node,
and the entry address is assumed to start from 1. The routing
information is not shown in this table for simplicity. As
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TABLE 2
An Example Routing Table Implementation for the Proposed

Trie

TABLE 1
An Example Prefix Set

Fig. 2. The proposed priority trie for the example set of prefixes.



shown in Table 2, the number of memory entries is the same
as the number of prefixes in the proposed priority trie.

Table 3 compares the number of memory accesses
between the binary trie and the proposed priority trie for
cases where the inputs match with each prefix as the BMP.
If the probability of each prefix being matched with inputs
is assumed to be equal, the average number of memory
accesses would be 2.78 for the proposed scheme, while it is
4.78 for the binary trie.

Fig. 3 shows the case where a new prefix 1001101� is
inserted into the priority trie in Fig. 2. Since the new prefix
matches P1 and is longer than the prefix P1, the new prefix
takes the node of P1. Similarly, the prefix P1 takes the node
of the prefix P2. Since the prefix P2 does not match any
other lower level prefix, it is stored as a new priority leaf. In
this case, a prefix insertion affects three entries.

Fig. 4 shows the case where the prefix P2 is deleted from
the priority trie in Fig. 2. The node has two children. The left
child, which is the prefix P3, is relocated to the node and the
node is marked as a priority node. Similarly, the prefix P4 is
relocated to the node of P3 and marked as a priority node.
The leaf node is empty, and hence, it is deleted. In this case,
a prefix deletion affects three entries.

7 SIMULATIONS AND PERFORMANCE EVALUATION

Simulations have been performed using C language for six
real prefix sets downloaded on May 2006 from backbone
routers [29]. The proposed priority binary trie and the
proposed priority multibit (2 bit) trie have been built using
the incremental build process, as shown in Section 5.

Tables 4 and 5 show the performance evaluation results of

the proposed priority binary trie and priority multibit trie,

respectively, in terms of the number of routing prefixes (N),

the number of priority prefixes (Np) among routing

prefixes, the maximum prefix length (W ), the depth of

the proposed priority trie (Dp), the average number of

memory accesses (Ta) for an address lookup, and the

memory requirement (M).
The memory requirement of the proposed priority trie is

directly proportional to the number of prefixes since there

are no empty nodes. The memory requirements shown in

the tables account for the data structure of the proposed

priority trie shown in the example in Table 2. The entry

width of the routing table can be designed with 39 bits (1 bit

for the node identity, i.e., priority node or ordinary node,

25 bits for the prefix considering that the shortest prefix

length is 8 bits, 5 bits for the prefix length, and 8 bits for

routing information) plus two fields for child pointers. The

number of bits for the child pointers depends on the size of

routing data set. If 20 bits are allocated for each of the child

pointers (assuming that the number of prefixes is no more

than a million), the memory requirement to store a prefix is

10 bytes. Therefore, once the estimated number of prefixes

is known for a router to be designed, the required memory
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Fig. 4. The priority trie updated by deleting prefix P2.

TABLE 4
Performance of the Proposed Priority Binary Trie

TABLE 5
Performance of the Proposed Priority Multibit TrieFig. 3. The priority trie updated by adding a new prefix as a priority node.

TABLE 3
The Number of Memory Accesses for Each Prefix Match



amount to store the forwarding table is determined since
the node size of the proposed priority trie is fixed and the
number of entries is the same as the number of prefixes.
Hence, the proposed algorithm is well suited for hardware
implementation.

For IPv6, the binary trie for IPv6 prefixes is expected to
be very sparse and there will be many empty nodes since it
has 128-bit address space. Since all of the empty nodes are
replaced by priority prefixes in the proposed priority trie,
the performance improvement will be much larger for IPv6.

As shown in the number of priority prefixes in Table 4,
more than 90 percent of the prefixes for the first three
prefix sets are stored by priorities, and this means that the
ordinary binary trie has many empty nodes. The more
priority nodes would result in the better search perfor-
mance with the proposed algorithm. The average number
of memory accesses is about 16-23, and it does not degrade
much as the prefix set grows.

In constructing the priority multibit trie, prefixes are
replicated to be extended to a certain length depending on
the predetermined stride. Hence, extra nodes are created in
the multibit trie. The result of the proposed priority multibit
trie shown in Table 5 is for the 2-bit stride. In Table 5, Ne is
equal to the total number of nodes in the proposed priority
multibit trie minus the number of prefixes in the prefix set.
Each empty internal node is replaced by the longest prefix
belonging to the subtrie of the empty node in the proposed
priority multibit trie. As shown in Table 5, the depth is 12-16
and the average number of memory accesses of the priority
multibit trie is about 10-13. Since the performance of the
proposed algorithm in terms of the trie depth, the average
number of memory accesses, and the required memory size
does not degrade much as the prefix set grows, the proposed
scheme is good in scalability with large routing data.

Simulations for evaluating the incremental update
performance of the proposed priority binary trie have been
performed. For insertion, the priority trie was primarily
built using the 75 percent of prefixes randomly selected for
those prefix sets in Table 4, and the performance was
measured for inserting the remaining prefixes to the trie one
by one. The performance was evaluated in two terms: the
number of pass-through nodes and the number of changed
nodes. The pass-through nodes mean the nodes that need to
be read and compared in inserting a prefix. The changed
nodes mean the nodes that need to be read, compared, and
replaced with another prefix in inserting a prefix. Here, the
changed nodes are included in counting the pass-through
nodes. Table 6 shows the number of prefixes used in
building a proposed priority trie (N75), the number of
prefixes used in evaluating the insertion performance (Ni),

the worst-case number (Pw) and the average number (Pa) of
pass-through nodes, and the worst-case number (Cw) and
the average number (Ca) of changed nodes. As shown in
Table 6, the average number of changed nodes is 2.0 to 2.3,
and hence, the proposed algorithm provides the incremen-
tal insertion.

For deletion, the priority trie was built using the
100 percent of prefixes in the prefix sets. The performance
was measured in deleting the 25 percent of the prefixes one
by one from the trie. The performance was evaluated using
the same two terms: the number of pass-through nodes and
the number of changed nodes. Table 7 shows the number of
prefixes in the prefix set (N), the number of prefixes deleted
from the trie (Nd), the worst-case number (Pw) and the
average number (Pa) of pass-through nodes, and the worst-
case number (Cw) and the average number (Ca) of changed
nodes. As shown in Table 7, the average number of changed
nodes are 2.0 to 2.5, and hence, the proposed algorithm
provides the incremental deletion.

Simulations have been performed with existing binary
search schemes for two routing sets, one with 112K entries
and the other with 227K entries. Simulation using those two
prefix sets can show the scalability of each algorithm when
the number of prefixes is doubled for the sets with a large
number of prefixes. Table 8 shows the performance
comparison in terms of the worst-case number of memory
accesses (Tw), the average number of memory accesses (Ta),
the required memory size (M), and the number of extra
nodes required in the algorithms (Ne). As shown in Table 8,
the proposed priority multibit trie is the best in the worst-
case number of memory accesses. For the average number
of memory accesses, the LC-trie is the best and the BSR and
the proposed priority multibit trie are the next.

Considering the required memory size, the BSR and the
proposed priority binary trie show the best performance.
Even though the proposed priority trie requires storing a
prefix value in each node, while it is not required in the
binary trie, the required memory size is smaller than the
binary trie since the proposed priority trie does not include
empty nodes. LC-trie requires huge memory because of the
redundant nodes created during the process of level
compression as shown in Ne. Since the BSR algorithm
requires precomputation of the best matching prefixes in
each entry, it requires a very complicated data structure for
the incremental update [11], [28], while the proposed
algorithm provides incremental update.

Regarding the scalability, the binary trie and the BSR
show very good characteristics since the performance was
not degraded much when the size of prefix sets is doubled.
However, it is shown that the LC-trie has a scalability issue
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TABLE 6
Insertion Performance of the Proposed Priority Binary Trie

TABLE 7
Deletion Performance of the Proposed Priority Binary Trie



since the required memory amount was grown 14 times
and the number of extra nodes was grown 17 times when
the size of prefix sets is doubled. It is also shown that the
BST has a scalability issue in the worst-case number of
memory accesses. The proposed algorithm shows very
good scalability in which all of the performance metric is
not degraded when the size of prefix sets is doubled.

8 CONCLUSION

Network devices face two areas of scaling challenges:
bandwidth scaling and population scaling [3]. Bandwidth
scaling occurs because links are getting faster and the
Internet traffic keeps growing. Population scaling occurs as
more end points are added to the Internet. These scaling
issues makes wire speed forwarding in the Internet routers
more challenging.

This paper presents a new mathematical formulation of
the IP address lookup problem as the range inclusion
problem. In the previous range matching algorithm of [9],
each prefix is extended to the maximum length for the start
point and the end point of its range, ranges are divided by
disjoint intervals, and BMPs for each disjoint interval need to
be precomputed in order to apply binary search. In the
proposed range representation, it is not necessary to extend
each prefix into the maximum length and each prefix is
represented as a range included in a number line between 0
and 1. Each prefix covers the range of 2�ni , where ni is the
length of prefix. The BMP is the smallest range that includes
the given input address. The characteristics of the binary trie
are described using the proposed range representation. A
new binary search algorithm based on the priority trie is
proposed in this paper. The proposed algorithm is based on a
binary trie, but each empty node in the binary trie is removed
by placing the priority prefix which is the longest prefix
included in the subtrie rooted by the empty node. Search in
the proposed algorithm finishes either at a match with a
priority prefix or at a leaf, and hence, the search performance
is improved significantly. The proposed algorithm also
provides incremental update by limiting the number of
changed nodes in inserting or deleting a prefix. Since the
proposed algorithm is based on a binary trie, it is concep-
tually simple and can be implemented easily. Simulation
results show that the required memory size and the number
of memory accesses in the proposed algorithm increase
moderately as the size of prefix set is increased, and hence,
the proposed algorithm is good in scalability toward large
routing data.

APPENDIX

Proof of Lemma 1. Assume that prefix Pj is a substring of
prefix Pi. The lower and the upper bounds of prefix ranges
rðPjÞ ¼ ½lj; ujÞ and rðPiÞ ¼ ½li; uiÞ can be represented as

lj ¼
Xnj

k¼1

bj;k2
�k; uj ¼

Xnj

k¼1

bj;k2
�k þ 2�nj ; li ¼

Xni

k¼1

bi;k2
�k; and

ui ¼
Xni

k¼1

bi;k2
�k þ 2�ni ;

where nj < ni and bj;k ¼ bi;k for k ¼ 1; . . . ; nj. Then,

li ¼
Xnj

k¼1

bi;k2
�k þ

Xni

k¼njþ1

bi;k2
�k

¼ lj þ
Xni

k¼njþ1

bi;k2
�k

� lj;

and

ui ¼
Xnj

k¼1

bi;k2
�k þ

Xni

k¼njþ1

bi;k2
�k þ 2�ni

�
Xnj

k¼1

bi;k2
�k þ

Xni

k¼njþ1

2�k þ 2�ni

¼
Xnj

k¼1

bj;k2
�k þ ð2�nj � 2�niÞ þ 2�ni

¼
Xnj

k¼1

bj;k2
�k þ 2�nj ¼ uj:

Hence, rðPiÞ 2 rðPjÞ and prefix Pi is enclosed in prefix Pj.
Proof of Lemma 2. Let vðAÞ ¼

PW
k¼1 ak2

�k, li ¼
Pni

k¼1 bi;k,

and ui ¼
Pni

k¼1 bi;k þ 2�ni . Assume that the ni bits ofA are the

same as the ni bits of Pi, i.e., ak ¼ bi;k for k ¼ 1; . . . ; ni. Then,

li ¼
Xni

k¼1

bi;k2
�k ¼

Xni

k¼1

ak2
�k

�
Xni

k¼1

ak2
�k þ

XW

k¼niþ1

ak2
�k

¼
XW

k¼1

ak2
�k ¼ vðAÞ;
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Comparison with Other Algorithms



and

vðAÞ ¼
XW

k¼1

ak2
�k ¼

Xni

k¼1

bi;k2
�k þ

XW

k¼niþ1

ak2
�k

�
Xni

k¼1

bi;k2
�k þ

XW

k¼niþ1

2�k

¼
Xni

k¼1

bi;k2
�k þ 2�ni � 2�W

<
Xni

k¼1

bi;k2
�k þ 2�ni ¼ ui:

Hence, vðAÞ 2 ½li; uiÞ ¼ rðPiÞ.
Proof of Lemma 5. Assume that nodes x and y are

distinct nodes at the same level L. Then, the number of bits
is same, and nx ¼ ny ¼ L. Assume that lx < ly, without loss
of generality, and it is necessary to prove that ux � ly. Let
bx;m be the first bit such that bx;m 6¼ by;m. Then, bx;k ¼ by;k for
k ¼ 1; . . . ;m� 1 and bx;m ¼ 0; by;m ¼ 1 since lx < ly:

ux ¼
XL

k¼1

bx;k2
�k þ 2�L

¼
Xm�1

k¼1

bx;k2
�k þ bx;m2�m þ

XL

k¼mþ1

bx;k2
�k þ 2�L

�
Xm�1

k¼1

bx;k2
�k þ

XL

k¼mþ1

2�k þ 2�L

¼
Xm�1

k¼1

by;k2
�k þ ð2�m � 2�LÞ þ 2�L

�
Xm�1

k¼1

by;k2
�k þ 2�m þ

XL

k¼mþ1

by;k2
�k

¼
XL

k¼1

by;k2
�k ¼ ly:

Hence, rðBxÞ \ rðByÞ ¼ ½lx; uxÞ \ ½ly; uyÞ ¼ ;, and the nodes x
and y are disjoint.

Proof of Lemma 7. In the priority trie, prefixes BðxÞ and
BðyÞ are stored at the ordinary nodes x and y, respectively.
By Lemma 5, rðBðxÞÞ \ rðBðyÞÞ ¼ ;. Hence, prefixes BðxÞ at
node x and BðyÞ at node y are disjoint.

Proof of Lemma 8. In the priority trie, prefixes P ðxÞ and
P ðyÞ are stored at priority nodes x and y, respectively.
Since prefix P ðxÞ has the highest priority in EðxÞ, where
EðxÞ is the set of prefixes that are enclosed in node x,
rðP ðxÞÞ 2 rðBðxÞÞ. Similarly, rðP ðyÞÞ 2 rðBðyÞÞ. By Lem-
ma 5, rðBðxÞÞ \ rðBðyÞÞ ¼ ;. Hence, rðP ðxÞÞ \ rðP ðyÞÞ ¼ ;,
and prefixes P ðxÞ at node x and P ðyÞ at node y are disjoint.

Proof of Lemma 9. In the priority trie, the prefix which
has bit string BðxÞ is stored at ordinary node x and
prefix P ðyÞ is stored at priority node y. Since P ðyÞ 2 EðyÞ,
rðP ðyÞÞ 2 rðBðyÞÞ. By Lemma 5, rðBðxÞÞ \ rðBðyÞÞ ¼ ;.
Hence, rðBðxÞÞ \ rðP ðyÞÞ ¼ ;, and the prefixes having the
bit strings BðxÞ at node x and P ðyÞ at node y are disjoint.

Proof of Lemma 10. There can be four cases for node
types. Case 1: Nodes x and y are ordinary nodes. Case 2:
Node x is an ordinary node and node y is a priority node.
Case 3: Node x is a priority node and node y is an ordinary
node. Case 4: Nodes x and y are priority nodes.

In Case 1, Pi ¼ BðxÞ and Pj ¼ BðyÞ. By Lemma 7, BðxÞ
and BðyÞ are disjoint. Hence, prefixes Pi and Pj are disjoint.
In Case 2, Pi ¼ BðxÞ and Pj ¼ P ðyÞ. By Lemma 9, BðxÞ and
P ðyÞ are disjoint. Hence, prefixes Pi and Pj are disjoint.
Case 3 is similar to Case 2. In Case 4, Pi ¼ P ðxÞ and
Pj ¼ P ðyÞ. By Lemma 8, P ðxÞ and P ðyÞ are disjoint. Hence,
prefixes Pi and Pj are disjoint.

Proof of Lemma 11. The proof is by induction. If L ¼ 0, x
is the root node. Since x is a priority node, P ðxÞ ¼ P1 and
vðAÞ 2 rðP1Þ. Since P1 has the highest priority in P, P1 at
priority node x is the BMP.

The search proceeds from level 0 to lower levels. Assume
that there is no priority node that matches A in levels 0
through L� 1 and the BMP does not exist in levels 0
through L� 1 for induction. Now, assume that A matches
Pm at a priority node x at level L.

There can be three cases that the BMP can exist. Case 1:
The BMP exists at levels Lþ 1; . . . . Case 2: The BMP exists
at another node at level L. Case 3: Pm at node x of level L is
the BMP.

If Pn is the BMP at node y in a lower level KðK > LÞ,
then vðAÞ 2 rðPnÞ and the Pn has the smallest range
including vðAÞ, and hence, rðPnÞ 2 rðPmÞ and Pn has higher
priority than Pm. In this case, Pn should have been stored at
a priority node at a higher level L0ðL0 � LÞ in the build
process and the address A should have matched Pn at the
level L0 in the search process. This is a contradiction, and
hence, Case 1 is removed.

By Lemma 8, two distinct prefixes at the same level in the
priority trie are disjoint. If Pn is a prefix at a node yðy 6¼ xÞ at
the level L, rðPnÞ \ rðPmÞ ¼ ;. Since vðAÞ 2 rðPmÞ, vðAÞ
cannot be enclosed in rðPnÞ, i.e., rðAÞ 62 rðPnÞ. Hence, the
BMP cannot be located at another node yðy 6¼ xÞ at the
level L, and hence, Case 2 is removed. Thus, the matched
prefix Pm at priority node x in level L is the BMP.
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